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SUMMARY 

Theoretical equations are derived for the motion of aircraft equipped 
with hydra-skis mounted on shock struts during take-off and landing opera- 
tions on a water surface. The case considered involves a ski which is 
fixed in trim relatFve to the aircraft and which translates upward during 
impact and thus telescopes the shock strut. Two hydmdynamic force rela- 
tions, one more accurate but more complex than the other, sre considered. 
Incorporation of suitable shock-strut spring and damping approxima;tions 
along with the simpler hydrodynamic-force term allows the equations to 
be written in nondimensional form for design-trend studies. Such trend- 
study solutions have been made for a broad range of practical water impacts 
and are presented as dimensionless plots. The equations involving the 
more accurate force term are usable only in the dimensional form as pre- 
sented, but they allow any spring type, any exponential damping constant, 
and a variety of ski bottom shapes to be included in the solutions. Thus 
the trend-study solutions may be used for rough preliminary design and the 
more accurate solutions for final design. An appendix is included which 
gives a simple step-by-step procedure for solving any'of the sets of equa- 
tions derived in the paper. 

INTRODUCTION 

ThFs paper deals with theoretical methods for treating oblique water 
impacts of aircraft equipped with nontrimming hydro-skis mounted on shock 
struts. The shock-mounted hydro-ski has become of interest in recent 
years primarily as a landing device for high-performance aircraft capable 
of operation from water, snow, ice, or sod bases. In add&tion to softening 
the iqacts encountered in operations from the solid-material runways, 
the shock strut allows a wider ski to be used on the water runways with- 
out increasfng the loads over those encountered with the narrower rigidly 

%upersedes NACA Research Memorandum L$+HlO by Emanuel Schnitzer, 19%. 
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mounted ski. Since the wider ski permits easier take-off because of its 
increased lift-drag ratio, the shock strut indirectly improves take-off 
performance without increasing the landing load. 

Although several ways have been conceived to mount hydro-skis on 
shock struts, such as, for example, the translating ski mounting, the 
trimming ski mounting, and the varying-dead-rise ski mounting described 
in reference 1, this paper is concerned only with the simple translating 
ski mounting. This design (see fig. 1) incorporates a ski which is fixed 
in trim relative to the aircraft and which translates upward under load, 
telescoping the shock strut. It is the purpose of this paper to derive 
and solve theoretical equations for this case. 

; The theoretical equations derived in this paper employ the 
hydrodynamic-force terms of references 2 and 3 in combination with the 
shock-strut spring and dsmping terms. The equations employing the force 
term of reference 2 are simple enough so that with suitable spring and 
dsxmping restrictions they can be solved and plotted in nondimensional 
form for use in design-trend studies. Such a study has been made for a 
broad, practical range of aircraft landing conditions and is included 
herein. The more accurate equations employing the force term of ref- 
erence 3 were too complex for expression in dimensionless form and so 

are presented in the form suitable for dynamic calculations involving 
a wide range of bottom shapes, spring types, and damping exponents. These 
more accurate equations might be employed for final design calculations. 1 

The paper is organized as follows: the equations of motion are 
derived for shock-strut damping proportional to an arbitrary power of 
the velocity, first for arbitrary spring force, then for constant spring 
force, and finally for line& spring force. The hydrodynamic-force term 
is next developed using reference 3 or planing data, and then using ref- 
erence 2. Following this, the motion equations employing the force term 
of reference 2 are nondimensionalized for the arbitrary-, constant-, and 
llnesr-spring-force approximations and for damping proportional to the 
square of the strut compression velocity. A discussion of the trend- 
study solutions of the dimensionless linear spring-force equations is 

included. An appendix gives a simple step-by-step procedure for solving 
any of the sets of equations derived ti this paper. 

, 

SYMBOLS 

b beam of ski 

beam-loading coefficient of ski, M/pb3 
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planing lift coefficient based on ski beam, 
I 

p s-b2 Fv,P 2 

speed coefficient, &li3 

damping constant of shock strut 

hydrodynamic force on ski 

spring force 

trim function, 0.0067-= sin5 2i cos2T, where T is in degrees 

acceleration due to gravity 

constant shock-strut spring force 

spring constant 

effective mass of aircraft attached to each shock strut 

damping exponent 
t 
20 nondimensional time variable, t II 

time after contact 

generalized displacement of ski normalto water surface relative 
to its position at water contact, Z/9 

generalized velocity of ski normal to Water SUrfaCe, $?$ = & 
ZO 

generalized acceleration of ski normal to water surface, 

d2, -= ;A- 
dT2 co2 

resultant velocity of aircraft 

forward velocity of ski parallel to undisturbed water surface 
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h, 

vertical displacement of ski normal to undisturbed water surface 
relative to its position at water contact 

vertical velocity of ski normal to undisturbed water surface 

- 
* 

vertical acceleration of ski normal to undisturbed water surface 

flight-path angle relative w undisturbed water surface 

constant spring-force parameter, H q cos T 

Mio2 

displacement of ski keel normal to itself relative to its posi- 
tion at water contact 

displacement of sld-step normal to its keel relative to undis- 
turbed water surface 

velocity of ski normal to its keel, 
i + Kio 

CO8 7 

acceleration of ski normal to its keel 

nondimensionalizing length, 

linear spring-force parameter, K -& 
io% 

approach parameter, iii:: ;, =Os p + To) 

ratio of mean wetted length to beam for a fl&, rectangular 

plate based on undisturbed water surface, Z 

b sin T 

ratio of mean wetted length to beam based on elevated water 
surface 

arbitrary spring-force parameter, +OS 7 

forward velocity of ski parallel to its keel 

forward acceleration of ski parallel to its keel 
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P mass density of water 

a ski cross-sectional shape factor 

7 trim of ski relative to undisturbed water surface 

srbitrary spring-force coefficient, 11 
;,%I 

n-2 
strut dsmping psrameter, c GO 

n-l M COB T 

Subscripts: 

e at exit 

m maximum value 

N normal to ski keel 

0 at water contact 

P Pl=in@; 

V normalto water surface 

Superscript: 

t referring to fuselage of aircraft instead of to ski 

THEORY FOR IMPACT OF SHOCK-MOUNTED HYDRO-SKI 

Equations of Motion 

In the following derivation of the equations of motion for the hydro- 
dynamic impact of shock-mounted hydro-skis, a system is considered in 
which the ski keel is oriented parsUe to the plane of symmetry and nor- 
asJ. to the axis of the shock strut (see fig. 1). The ski is assumed to 
remah fixed in trim and since its weight is usually less than 5 percent 
of the weight of the airplane, the ski mass is neglected. Since the besm- 
loading coefficient of hydra-skis is usually lsrge, the force due to 
acceleration of the virtual mass of water is also neglected (ref. 3). 
In order to further simplify the problem, an additional idealization is 
made that the aircraft is rigid. 
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The selection of a shock absorber with desirable force character- 
istics is a difficult problem in view of the many variables involved in 
hydra-ski lending operations. The selection of the proper chsracter- 
istics is therefore left open insofar as possible by writing the equa- 
tions of motion first for a shock strut having a general type of springing 
as some srbitrary function of the strut telescoping displacement; two 
approximate forms for the spring-force functfon will be considered later. 
In the derivation the assmptions are made that the shock-strut damping 
force vsries as some arbitrary power of the velocity of compression;.that 
the wing lift of the aircraft is balanced by its weight, and that fric- 
tionless flow exists in the water inq?inging on the ski. 

Qn the basis of the foregoing assumptions, the equation governing 
motion of a shock-mounted hydra-ski normal to its bottom and neglecting 
strut telescoping frfction (see fig. 1) is 

FN = cl(if - i,” + f&’ - !h) 

when the shock strut is compressing and 

Flu = -4 - ? In + flu&' - bd 

O-4 

when the shock strut is exten 9. In these equations 
dynsmic force on the ski, fl(& - &) is th 

FN is the hydra- 
e spring or air compression 

force in terms of the strut telescoping displacement &jsf - fs, cl 
and c2 are the damping constants, n is the damping exponent, and 5 
and 5' sre the normal velocities of the ski and aircraft, respectively. 
Although, for convenience, the full damping force is sometimes assumed 
to reverse on shock-strut extension so that cl= c2, actually in practice 
a fluid-return dump valve might be employed so that the strut damping 
force would approach zero on shock-strut extension, and if the ski were 
in the water during this time the normal load extending the ski would 
approximate the spring force. Since the lower mass (ski and lower part 
of shock strut) is neglected, the hydrodynamic normal force of equa- 
tions (1) is communicated directly to the aircraft fuselage, and since 
the wing lift is assumed equal to the weight of the aircraft the equa- 
tion of motion of the fuselage is expressed by Newton's third law as 

FN + ME' = 0 (2) 

where M is the mass of the aircraft and 5" is the acceleration of 
the fuse1 e normal to the keel. If equation (2) is substituted into 
equations 1), the following equations result: 

* 

Y 

-. 

Y 
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Mt’ zk c(+f’ T 5)” + f&’ - 5,) = 0 (3) 

where the upper signs signify strut compression and the lower signs strut 
extension. Equations (2) and (3) may be rewritten in terms of the coor- 
dinate system normal to the water surface by means of the following sub- 
stitutions (see velocity diagram Fn fig. 1): 

. . . . 
c=L 

CO8 7 

& i + K;o 
COB 7 

(44 

(4b) 

(4c) 

where 

K = ' sin T = BFn T COS(T + 70) 
;o sin Yo 

and i is taken equal to 0 because of the.assmption of frictfonless 
flow and no external force, thus rendering 5 a constant. The rela- 
tionships between the primed quantities are expressed by stmilar equations. 
The substitution of equations (&a), (bb), and (4-c) and the primed equiva- 
lents into equations (2) and (3) leads to the following expressions: 

and 

since 
. 

i,' = 20. In these equations F, is the vertical component of 
the hydrodynamic force, i and i' me the vertical velocities of the 
ski and fuselage, respectively, and i" iB the VeI%iCd aCCeleratiOn 



8 NACA TJX 4256 

c 

of the fuselage. Specific solutions of equations (5) and (6) csn be 
effected, provided that suitable expressions for F, and fl me avail- 
able and the constants M, c, n, 7, =d 70 are given. 

* 

Spring Force 

In some instances it is believed that a shock strut having a constant- 
force spring exerting a force of slightly greater than 1 g may be desir- 
able. Such a strut would be extended between impacts and during planing. 
It would therefore m&e available its entire stroke for impact load reduc- 
tion. For this case and for those cases where the spring force may be 
approximated by a constant with reasonable results, the spring term in 
equation (6) may be written 

fl =H (7) 

where H is defined as a constant spring force. It should, however, 

be remetiered that when F' < i cos T and fB' - cs = 0, equation (6) 

modified by equation (7) for constant spring force no longer applies, 
since the shock strut behaves as a rigid link zs = zSr, i = i', and 
. . .., In this region, equation (5) and its integrated form will yield z= z . 
solutions for the acceleration of the aircraft. 

0 
- 

* 

The air springing force on some existing landing-gear shock struts 
may be roughly approximated by a straight-line force-deflection curve 

- 

for some applications. For this approximation the force curve is assumed 
to intersect the origin of zero force and zero strut compression, although 
in the actual air-spring case a substantial force exists for negligible 
strut compressions which enables more rapid reextension of the strut for 
subsequent impacts. This linear springing reaction is defined as 

.- 

(8) 

where K is the spring constant and z' and z are the respective 
displacements of the fuselage and hydra-ski~normal to the undisturbed 
water surface. 
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4 
9 

Hydrodynsmlc Force 

The hydrodynamic impact force for use in solving the equations of 
motion can be obtained from theoretical or experimental high-speed planing 
data for the case of the usual heavily loaded hydra-ski under considera- 
tion in this paper. An empirical formula for the fnstsntaneous planing 
lift may be derived from reference 2 or planing experiments, and a theo- 
retical one from reference 3. The application of these formulas to the 
impact case is given in the subsequent sections following the expression 
of the impact force in terms of the planing reaction. Although the equa- 
tions of motion involving the hydrodynamic force from reference 3 or 
planing experiments are believed to be more accurate than those using 
the hydrodynamic force from reference 2, the latter equations are simpler 
and so can be applied in nondimensional form to trend-study solutions. 

In order to express the hydrodynsmic impact force on a heavily loaded 
prismatic hydra-ski in terms of the plan- reaction, this force, which 
is directed normal to the keel, is first written in the form 

FN = (9) 

where p is the mass density of the fluid, CT is the cross-sectional 
shape factor, snd the effect of f-t-path angle on the pressure distri- 
bution is considered secondsry. The hydrodynamic-force term proportional 
to the normal acceleration of the ski is neglected since it is usually 
small for lsrge beam loadings. The vertical component of the normal 
force can be expressed as 

F V = pb2i2f 

or 

Fv= pb2 

through the introduction of equation (4b) into equation (10). 

(10) 

The function f3 can be evaluated for the case of steady planin@; 

(y = 0) for which [ = 2 sin T (see fig. l), where li: is the forward 
velocity parallel to the undisturbed water surface. Substitution of 
this expression for f in equation (10) results in the equation 
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c 

f3(+3) = 
F 

',P 
ob2x2 siniT 

0-a _ 

Hydrodynamic force from planing experiments or reference 3.- For 
the flat or V-bottom ski, f3 can be evaluated by means of the theoret- 
ical equations in reference 3 (see especially equation (11) in that ref- 
erence), while for the prismatic bottom,of arbitrsry cross section experi- 
mental planing data obtained with a ski model may be used as in reference 4. 
In order to make- specific solutions of shock-mounted hydro-ski landings, 
the force term defined by equation (IL) is substituted into the equations 
of motion. Thus equation (5) is replaced by the equation of motion 

= 0 (13) 
- 

where the beam-loading coefficient CA = A. 
pb3 

Solutions may be obtained, by any of the usual numerical methods, m 
for equation (13) in combination with equation (6) for arbitrary spring 
force or with modifications of equation (6) which incorporate equation (7) 
for constant spring force or which incorporate equation (8) for linear PI 
spring force. One method of solution is illustrated in the appendix of 
this paper. 

Hydrodynamic force from reference 2.- In order to obtain nontimen- 
sional solutions of the equations of motion, a simple expression for the 
vertical hydrodynamic force on an impact 

? 
rectangular flat plate must 

be derived for substitution into equation 13). This expression is 
obtained from the empirical equation for the planing lift coefficient 
given in reference 2 as 

- 

c,= 
%P = A1 o.o12h, 

[ 

l/2 ( )I k2 -I- o.oogg - E sb2 CV 
(14) 
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where h, is defined as the ratio of the mean wetted length to the beam 
of the model, Cv is the speed coefficient defined as 2 f& and T / 
is expressed in degrees. Since values of Cv encountered in landing 
impact are usually large, the second term in equation (14) becomes quite 
small and m&y be neglected. The hydrodynamic planing force may therefore 
be expressed as 

F ',P = O.O06pit2b2+1~~/2 (15) 

Since the equations of motion are written in terms of the time deriva- 
tives of z, it is desirable to write equation (15) in terms of these 
variables. If the water rise in front of the model is neglected, the 
error introduced till not be excessive for many applications (see ref. 3) 
and the mean length-beam ratio may be expressed as 

hPh=bs&T (16) 

A combination of equations (X2), (15), and (16) yields the value of 
f3(z/b,T,u) which upon substitution into equation (IL) gives the verti- 
cal hydrodynamic force 

Fv = ~14; + &o)2pb3/2 o'oo6T1'1 

Sin5i2T COS2T 

or 

F, = z1i2(i + "io) 2 ‘j2f(T) pb (17) 

where f(T) = 0.006+~ 

sin512 
and 7 is expressed in degrees. 

7 COS2T 
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Substitution of equation (17) into equation (5) results in the 
equation of motion 

i” + z’/‘(i f Kq 2+= 0 
2 

%P 
WV 

Solutions may be obtained by numerical methods for equation (18) in com- 
bination with equation (6) for-arbitrary spring force or with modifica- 
tions of'equation (6) which incorporate equation (7) for constant spring 
force or which incorporate equation (8) for linear spring force. One 
method of solution is illustrated in the appendix. 

Nondimensional Equations of Motion 

Nondimensionalizing the equations of motion allows a lsrge number 
of specific solutions to be represented by a smaller number of nondimen- 
sional plots. In this section nondimensional vsriables sre derived and 
in the following sections of the paper the arbitrsry-, constant-, and 
linear-spring-force equations are nondimensionalized in that sequence 
through substitution therein of these new variables. 

In the nondimensionalizing process, new dimensionless independent 
variables are formed through division of the basic independent variables 
of displacement z and time t by physical constants of like dimension. 
Thus, the nond3mensions.l. vertical displacement u is obtained through 
division of the displacement z by the constant q which has the dimen- 
sion of length, or 

u= z 
tl 

and the nondimensional time T is obtained through division of the 
time t by the constant q/i, which has the dimension of time, or 

T=t 
Go 

(191 

m 

The nondimensional variables of higher order ere obtained by taking 
successive derivatives of the nondimensional displacement with respect 
to the nondimensional time. Thus, the nondimensional vertical velocity 
is defined as 
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. u = du _ du dt 
dT dt ZII 

and the nondimensional vertical acceleration becomes 

(a 

Since du=% and dt=+, 
dt q dT zo 

equation (21) for the vertical velocity can 

be restated 

. i 
UC-.- 

. (23) 
ZO 

L d2u i' andsince -= -, equation (22) for the vertical acceleration can be 
dt2 rl 

restated 

Equations (19), (20) j (23) j and (24) define the dimensionless variables 
of the problem which permit nondknensionalization of the equations of 
motion. An exactly psrallel set of equations.?or II',.. fi', snd ii' may 
be obtained in terms of the quantities z', z,end z'. 

Arbitrery-spring-force equations.- Equations (6) and (18) ere the 
equations of motion for the arbitrary-spring-force case. These equa- 
;;$s are nondimensionalized through substitution therein of equations (lg), 

9 and (24) and the primed equivalent expressions. The resulting 
relations are, from equation (6): 

.w’ 

ii’ * $f(*lY T li>n + #flEU? - 3 = 0 (25) 

and from equation (18): 
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ii’ + ,1/q; + I+ =o 

i'f the arbitrary constant 7 is defined as 

2/3 

and where 

l n-2 
l#=c z" 

M COSn-IT 

#= 
7 CO8 7 

(26) 

(27) 

(28) 

(29) 

P I-AL (30) 
CO8 7 

and u and u' are functions of T. (Note, in these and the following 
generalized expressions, that Z& = io', that uo, u,', Uo, and I&' = 0, 
andthat I&=+,'= 1.) Thus the nondimensional motion equations (25) 
and (26) completely define the time histories of the nondimensional vari- 
ables u, fi, u', cr, and ii' in terms of the arbitrary parameters n, 
9, K> 9, 94 and CL- 

Constant-spring-force equations.- Equations (6), (71, and (18) are 
the equations of motion for the constant-spring-force case. If equa- 
tions (19), (23), and (24)) the primed equivalents, and equation (27) are 
substituted into these motion equations the following relations are 
derived: 
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ii f. $(&Ii 7 li)” + 6 = 0 

and (eq. (26)) 

iit + u1i2(li + #)2 = 0 

where 

(31) 

(32) 

Equations (31) and (26) completely define the dimensionless time histories 
for the constant-spring-force case. 

Linear-spring-force equations.- The equations of motion for the 
linear-spring-force case are nondimensionalized exactly as were the 
constant-spring-force equations, with the result that equations (6) and 
(8) b ecome 

;;I f $(kli + gn + e(u’ - u) = 0 

and equation (18) becomes equation (26): 

ii’ + u1/q; + K)2 = 0 

where 

8 q2 =KT 
zO M 

(33) 

(34) 

Equations (33) and (26) completely define the dimensionless time histories 
for the linear-spring-force case. 

A numerical step-by-step procedm for obtaining solutions of any 
of the foregoing sets of equations of motion is described in the appendix. 
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DISCUSSION OF NONDlMENSIONAL SOLUTIONS 

c- 

In order to provide trend studies for use in preliminary design of 
shock-mounted hydro-skis, solutions were made of equations (26) and (33) 
on a Reeves Electronic Analog Computer for a tide range of psmmeters. 
The equations for the linear-spring-force case were chosen since they 
were easier to handle than the constant-spring-force equations and since 
preliminszy solutions indicated that differences in the results between 
the linear- and constant-spring-force cases and the exact air-spring case 
were small in the practical region. The valuei of 2 was selected for the 
damping exponent n. In order to apply these. solutions to a practical 
problem, a set of scale factors may be obtained by evaluating equation (2'7) 
in terms of the constants of the actual problem. New scales may be com- 
puted for any given aircraft and written in over the existing scales on 
the plots of figures 2, 3, 4, and 5. The parameters K, $, and 8 may 
be evaluated for the cases of interest by substitution of the appropriate 
apm;~? conditions and design constants into equations (ti), (28), 

. 

Figure 2 presents nondimensional acceleration time histories for 
most of the region embraced by the values of tc, $, and 8 from 0.1 
to100 and n equalto2. These curves give the variation of the accel- 
eration of the aircraft normal to the undisturbed water surface for dif- 
ferent approach conditions and shock-strut spring and dsmping constants. 
The general trends which are apparent are as follows. 

(a) The effect on the acceleration of varying the dsmping constant $ 
becomes smaller as 0 increases, since the ratio of the spring force to 
dsmping force increases. 

(b) The acceleration time history has the appearance of a combina- 
tion of two separate curves. One, arising from the strut dsmping reaction, 
has an early peak, and the other, arising from the strut spring reaction, 
has a later peak. This is reasonable since the highest strut compression 
velocity occurs early in the impact, making for large damping force, while 
the maximum strut compression displacement occurs later in the impact, . 
giving the large spring force. For intermediate spring and damping 
reactions the peaks approach equal heights, resulting in a flat-topped 
or rectangular force curve. 

- 

(4 As tc increases (approaching the planing condition) the effect 
on the acceleration of varying $ is increased over that of vsrying 8. 
This probably is the result of very small strut compression displacements 
at substantial compression velocities. 

The maximum values of the dimensionless acceleration -ii' sze 
plotted against the damping parsmeter $ in figure 3 for the different 

- 

I 
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values of spring psrmieter 13 and the approach psrsmeter tc. The 
dsmping psmmeter rather than the spring parameter was chosen as the 
abscissa since damping is usually the more -ortaut factor in shock- 
strut design. For a given aircraft at a given trim and vertical velocity 
at contact, the scale values on the plots of figures 3, 4, and 5 can be 
used directly for depicting relative trends of the dimensional quantities, 
as their magnitudes be= the correct ratios to each other. For example, 
in figure 3 the acceleration is proportional to -ii', the spring constant 
to 8, and the dsmping constant to jr, while K approxime;tes '/y. for 
the low trim angles. 

From this figure it is evident that, in general, the msximum accel- 
eration increases with the spring constant and the wing constant and 
decreases with increasing flight-path angle. FYom a dimensional viewpoint 
this last rerult may be explained by assming the above conditions of con- 
stant initial vertical velocity and trim, for which a reduction in y. 
would mean an increase in resultant velocity at contact with correspondingly 
larger loads. 

The effect of variation of shock-strut and approach parameters on 
the vertical velocity at water exit, which affects the severity of sub- 
sequent impacts, may be observed from figure 4. It does not appear that 
any general comment can be made regarding the trends in this figure, 

c although such trends would probably become more pronounced for a given 
aircraft with its more restricted practical rauge of K, 8, and $. 

" An idea of the required shock-strut length for au aircraft may be 
obtained by means of figure 5. This figure presents the maximum strut 
stroke utilized in impacts for the ranges of K, 0, and J) covered by 
the previous figures. The general trends apparent from figure 5 are 
that the strut stroke decreases with increasing dmu@ng constant, spring 
constant, and initial flight-path angle. The decrease with increasing 
flight-path angle is probably a result of the lower loads arising from 
the reduction in horizontal velocity occurring at the higher flight-path 
angles. From the foregoing figures the designer ma.y reach the best engi- 
neering compromise between a rectanguJar shock-strut force-time curve, 
minimum rebound velocity from the water surface, and shortest required 
strut stroke. 

CONCLUDING REMARE 

Theoretical equations have been derived for treating oblique water 
impacts of 821 aircraft equipped with a flat-plate hydro-ski mounted on 
a shock strut. These equations were nondimensionalized and solved, and 
the results were plotted for the case of velocity-squared dmping and a 
linear spring reaction for a wide range of design parameters. On these 
plots the following trends may be observed. 
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A tendency toward a double peak e.xists on the acceleration time 
histories, mainly because of shock-strut characteristics. The early 
peak results principally from the large aRmping force at high initial 
telescoping velocity while the later one results principally from the 
large spring force at large telescoping deflection. 

The effect on the acceleration time history of varying the dsmping 
constant becomes smaller as the spring constant is Increased. 

The effect on the acceleration time history of variation of the 
damping constant becomes greater than the effect of variation of the 
spring constant as the initial flight-path angle is decreased. 

For a given initial vertical velocity and trim, the maximum accelera- 
tion increases with the sprFng and damp- constants and decreases with 
increasing flight-path angle. Also the required strut stroke decreases 
with increasing damping constant, spring constant, and initial flight- 
path angle. 

- 
- 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., July 27, 1954. 
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AFFENDM 

NUMERICAL SOLUTION OF EQWIONS OF MOTION 

The equations of motion derived in the body of this paper may be 
solved by my of the standard numerical procedures (refs. 5 and 6). One 
such step-by-step process involving incremental linesz extrapolation of 
vertical velocity with a correction to this velocity at each step is 
described below. In order to avoid duplication, any of the sets of equa- 
tions proposed Fn this paper can be replaced by two equivalent expressions 
for which the nmerical procedure is set up. These expressions are as 
follows: 

ii' + fb(V)(i + KGo)2 = 0 (fi) 

and 

i;' f A(++' T ;)n + f,($ _ v) = 0 (=I 

where v and v' are functions of some sort of time, say t, for example. 
In these equations v, 3, and l G are, respectively, the displacement, 
velocity, and acceleration of the ski normal to the water surface while 
the primed equivalents refer to the fuselage motions. These equations 
sre used for illustrative purposes and the actual solutions should be 
carried out with the specific equations of the problem after the proper 
functions have been evaluated snd substituted therein. 

The step-by-step computation can be carried out by selecting several 
successive values of G designated Ga, +b, and Gc for values of 
time t separated by increments designated At. The values of +a 
and +b will be Considered kt10Wn from preViOUS Step or from initial 
values of the variables. Since Go = 0, the velocity can be assumed to 
be constant over the first increment; hence +a = ;b = Go. It is desired 
to obtain successive values of some of the derivatives of v and v' 
with respect to t, and especially accurate values of Gc since this 
quantity is extrapolated. The equations selected to accomplish this sze 

. vx = tib - +a (A3) 

vc = vb + 
Gx + 4-t) At 

2 (A4) 
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;;g = -f4bc)(+x + K+o) 
2 

.I l t 

vc' = vg + vc + vb L!& 
2 

c 

(A51 - 

(A@ 

(A71 

where x indicates a trial value at point c obtained through extra- 
polation, and the upper and lower signs refer, respectively, to strut 
compression and extension. 
signs when i' 

A switch is made from the upper to the lower 
becomes equal to or less than v. 

The value of Gc is the required accurate value which for the next 
increment becomes $,t the previous ;b becoming +a. Although the s 

operations carried out with equations (A3) to (A8) could be repeated for 
the same increment of time At with vc substituted for vx, one cor- Y 
rection for each step is believed to be sufficient, provided a small 
enough incremental time is chosen. For many applications, it is believed 
advisable to select very small increments for the first four or five 
steps and larger increments from there on, although it must be remembered 
that in all cases the time increment from a to b must equal the time 
increment from b to c. 

The correct increment size may be established by experience acquired 
in making several solutions for a given problem and using different incre- 
ment sizes for each solution. The increment size may be increased until 
the point is reached where the solutions diverge from the more accurate 
curve obtained with a very small ticrement size. If a small-period oscil- 
lation is present in the curve, too large an increment size is also indi- 
cated. The values determined from the repeated application of equa- 
tions (A3) to (A8) when plotted against t give the motions of the ski 
and fuselage-throughout-the *act. 

If it is assumed that a dump valve exists in the shock absorber, 
then the dsmping on strut extension becomes considerably less thm on 
compression. When this condition exists, the vaQe of A, and possibly * 
of n also, will become different during the extension psrt of the stroke. 

. 
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Elgure 2.- Nondimensional acceleration tim histories for various values 
of the spring parameter 9, the damping parmeter $, and the approach 
parameter K, with the ilemping exponent n s 2. 
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Figure 2.- Continued. 
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Figure 2.- Concluded. 
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Figure 4.- Variation of nond.imnsional eldt velocity with damping 
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the approach $tuwxter K, with the damping exponent n = 2. 
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